skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gomez-Leos, Enrique"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. A sign pattern is an array with entries in $$\{+,-,0\}$$. A real matrix $$Q$$ is row orthogonal if $QQ^T = I$. The Strong Inner Product Property (SIPP), introduced in [B.A. Curtis and B.L. Shader, Sign patterns of orthogonal matrices and the strong inner product property, Linear Algebra Appl. 592: 228-259, 2020], is an important tool when determining whether a sign pattern allows row orthogonality because it guarantees there is a nearby matrix with the same property, allowing zero entries to be perturbed to nonzero entries, while preserving the sign of every nonzero entry. This paper uses the SIPP to initiate the study of conditions under which random sign patterns allow row orthogonality with high probability. Building on prior work, $$5\times n$$ nowhere zero sign patterns that minimally allow orthogonality are determined. Conditions on zero entries in a sign pattern are established that guarantee any row orthogonal matrix with such a sign pattern has the SIPP. 
    more » « less